Friday, 9 December 2016

TIME TRAVEL..

black hole

One way to achieve time travel into the future would be travelling at the speed of light in space, as first theorised by Albert Einstein.The accepted theory is that one would have to build a space ship that can travel at the speed of light, and head out into space.Theoretical physicist and string theorist Brian Greene, of Columbia University, said: “You can build a spaceship, go out into space [and travel] near the speed of light, turn around and come back.Einstein also theorised that if you were to situate yourself on the edge of a black hole, time would pass more slowly.Prof Greene explains in his Big Think video: “You hang out [next to a black hole] for a while, you come back, get out of your ship and it will be any number of years into the future, whatever you want all depending on how close you got to the edge of the black hole and how long you hung out there. 



Saturday, 26 November 2016

POSITRON.. POSITIVELY CHARGED ELECTRON

The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. The positron has an electric chargeof +1 e, a spin of 1/2, and has the same mass as an electron. When a low-energy positron collides with a low-energy electron, annihilation occurs, resulting in the production of two or more gamma ray photons (see electron–positron annihilation).
Positrons may be generated by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon which is interacting with an atom in a material.


Dmitri Skobeltsyn first observed the positron in 1929. While using a Wilson cloud chamber to try to detect gamma radiation in cosmic rays, Skobeltsyn detected particles that acted like electrons but curved in the opposite direction in an applied magnetic field.
Likewise, in 1929 Chung-Yao Chao, a graduate student at Caltech, noticed some anomalous results that indicated particles behaving like electrons, but with a positive charge, though the results were inconclusive and the phenomenon was not pursued.
Carl David Anderson discovered the positron on August 2, 1932, for which he won the Nobel Prize for Physics in 1936. Anderson did not coin the term positron, but allowed it at the suggestion of the Physical Review journal editor to which he submitted his discovery paper in late 1932. The positron was the first evidence of antimatter and was discovered when Anderson allowed cosmic rays to pass through a cloud chamber and a lead plate. A magnet surrounded this apparatus, causing particles to bend in different directions based on their electric charge. The ion trail left by each positron appeared on the photographic plate with a curvature matching the mass-to-charge ratio of an electron, but in a direction that showed its charge was positive.
Anderson wrote in retrospect that the positron could have been discovered earlier based on Chung-Yao Chao's work, if only it had been followed up on.[11] Frédéric and Irène Joliot-Curie in Paris had evidence of positrons in old photographs when Anderson's results came out, but they had dismissed them as protons.
The positron had also been contemporaneously discovered by Patrick Blackett and Giuseppe Occhialini at the Cavendish Laboratory in 1932. Blackett and Occhialini had delayed publication to obtain more solid evidence, so Anderson was able to publish the discovery first

Friday, 25 November 2016

SPACE TIME

Space-time is a mathematical model that joins space and time into a single idea called a continuum. This four-dimensional continuum is known as Minkowski space.Combining these two ideas helped cosmology to understand how the universe works on the big level (e.g. galaxies) and small level (e.g. atoms).In non-relativistic classical mechanics, the use of Euclidean space instead of space-time is good, because time is treated as universal with a constant rate of passage which is independent of the state of motion of an observer.But in a relativistic universe, time cannot be separated from the three dimensions of space. This is because the observed rate at which time passes depends on an object's velocity relative to the observer. Also, the strength of any gravitational field slows the passage of time for an object as seen by an observer outside the field.

Wednesday, 23 November 2016

INTRODUCTION TO THERMODYNAMICS...

Thermodynamics is a branch of science concerned with heat and temperature and their relation to energy and work. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the composition or specific properties of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistrychemical engineering and mechanical engineering.
Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scottish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854:
Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency.

Tuesday, 22 November 2016

INTRODUCTION TO ELECTROMAGNETISM...

Electromagnetism:

  • in a key development for modern physics, electricity and magnetism were `unified' into electromagnetism
  • the connection develops from the fact that an electric current (the flow of electrons in a metal) produces a magnetic field
  • Faraday shows that a changing electric field produces a magnetic field and, vice-versus, a changing magnetic field produces an electric current
  • Maxwell completes the theory with a full mathematical description of the relationship between electric and magnetic fields = electromagnetism

Monday, 21 November 2016

INTRODUCTION TO STATISTICAL MECHANICS....

a branch of mechanics dealing with the application of the principles of statistics to the mechanics of a system consisting of a large number of parts having motions that differ by small steps over a large rangeA common use of statistical mechanics is in explaining the thermodynamic behaviour of large systems. This branch of statistical mechanics which treats and extends classical thermodynamics is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice. The benefit of using statistical mechanics is that it provides exact methods to connect thermodynamic quantities (such as heat capacity) to microscopic behaviour, whereas, in classical thermodynamics, the only available option would be to just measure and tabulate such quantities for various materials. Statistical mechanics also makes it possible to extend the laws of thermodynamics to cases which are not considered in classical thermodynamics, such as microscopic systems and other mechanical systems with few degrees of freedom.

Saturday, 19 November 2016

INTRODUCTION TO RELATIVITY....

The Theory of Relativity, proposed by the Jewish physicist Albert Einstein (1879-1955) in the early part of the 20th century, is one of the most significant scientific advances of our time. Although the concept of relativity was not introduced by Einstein, his major contribution was the recognition that the speed of light in a vacuum is constant and an absolute physical boundary for motion. This does not have a major impact on a person's day-to-day life since we travel at speeds much slower than light speed. For objects travelling near light speed, however, the theory of relativity states that objects will move slower and shorten in length from the point of view of an observer on Earth. Einstein also derived the famous equation, E = mc2, which reveals the equivalence of mass and energy. When Einstein applied his theory to gravitational fields, he derived the "curved space-time continuum" which depicts the dimensions of space and time as a two-dimensional surface where massive objects create valleys and dips in the surface. This aspect of relativity explained the phenomena of light bending around the sun, predicted black holes as well as the Cosmic Microwave Background Radiation (CMB) -- a discovery rendering fundamental anomalies in the classic Steady-State hypothesis. For his work on relativity, the photoelectric effect and blackbody radiation, Einstein received the Nobel Prize in 1921.