Friday, 9 December 2016
Saturday, 26 November 2016
POSITRON.. POSITIVELY CHARGED ELECTRON
The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. The positron has an electric chargeof +1 e, a spin of 1/2, and has the same mass as an electron. When a low-energy positron collides with a low-energy electron, annihilation occurs, resulting in the production of two or more gamma ray photons (see electron–positron annihilation).
Positrons may be generated by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon which is interacting with an atom in a material.
Dmitri Skobeltsyn first observed the positron in 1929. While using a Wilson cloud chamber to try to detect gamma radiation in cosmic rays, Skobeltsyn detected particles that acted like electrons but curved in the opposite direction in an applied magnetic field.
Likewise, in 1929 Chung-Yao Chao, a graduate student at Caltech, noticed some anomalous results that indicated particles behaving like electrons, but with a positive charge, though the results were inconclusive and the phenomenon was not pursued.
Carl David Anderson discovered the positron on August 2, 1932, for which he won the Nobel Prize for Physics in 1936. Anderson did not coin the term positron, but allowed it at the suggestion of the Physical Review journal editor to which he submitted his discovery paper in late 1932. The positron was the first evidence of antimatter and was discovered when Anderson allowed cosmic rays to pass through a cloud chamber and a lead plate. A magnet surrounded this apparatus, causing particles to bend in different directions based on their electric charge. The ion trail left by each positron appeared on the photographic plate with a curvature matching the mass-to-charge ratio of an electron, but in a direction that showed its charge was positive.
Anderson wrote in retrospect that the positron could have been discovered earlier based on Chung-Yao Chao's work, if only it had been followed up on.[11] Frédéric and Irène Joliot-Curie in Paris had evidence of positrons in old photographs when Anderson's results came out, but they had dismissed them as protons.
The positron had also been contemporaneously discovered by Patrick Blackett and Giuseppe Occhialini at the Cavendish Laboratory in 1932. Blackett and Occhialini had delayed publication to obtain more solid evidence, so Anderson was able to publish the discovery first
Friday, 25 November 2016
SPACE TIME
Space-time is a mathematical model that joins space and time into a single idea called a continuum. This four-dimensional continuum is known as Minkowski space.Combining these two ideas helped cosmology to understand how the universe works on the big level (e.g. galaxies) and small level (e.g. atoms).In non-relativistic classical mechanics, the use of Euclidean space instead of space-time is good, because time is treated as universal with a constant rate of passage which is independent of the state of motion of an observer.But in a relativistic universe, time cannot be separated from the three dimensions of space. This is because the observed rate at which time passes depends on an object's velocity relative to the observer. Also, the strength of any gravitational field slows the passage of time for an object as seen by an observer outside the field.
Wednesday, 23 November 2016
INTRODUCTION TO THERMODYNAMICS...
Thermodynamics is a branch of science concerned with heat and temperature and their relation to energy and work. The behavior of these quantities is governed by the four laws of thermodynamics, irrespective of the composition or specific properties of the material or system in question. The laws of thermodynamics are explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering.
Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scottish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854:
Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency.
Tuesday, 22 November 2016
INTRODUCTION TO ELECTROMAGNETISM...
Electromagnetism:
Monday, 21 November 2016
INTRODUCTION TO STATISTICAL MECHANICS....
a branch of mechanics dealing with the application of the principles of statistics to the mechanics of a system consisting of a large number of parts having motions that differ by small steps over a large rangeA common use of statistical mechanics is in explaining the thermodynamic behaviour of large systems. This branch of statistical mechanics which treats and extends classical thermodynamics is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice. The benefit of using statistical mechanics is that it provides exact methods to connect thermodynamic quantities (such as heat capacity) to microscopic behaviour, whereas, in classical thermodynamics, the only available option would be to just measure and tabulate such quantities for various materials. Statistical mechanics also makes it possible to extend the laws of thermodynamics to cases which are not considered in classical thermodynamics, such as microscopic systems and other mechanical systems with few degrees of freedom.
Saturday, 19 November 2016
INTRODUCTION TO RELATIVITY....

Subscribe to:
Posts (Atom)